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We present a model for innovation, evolution, and opinion dynamics whose spreading is dictated by a
unanimity rule. The underlying structure is a directed network, the state of a node is either activated or
inactivated. An inactivated node will change only if all of its incoming links come from nodes that are
activated, while an activated node will remain activated forever. It is shown that a transition takes place
depending on the initial condition of the problem. In particular, a critical number of initially activated nodes is
necessary for the whole system to get activated in the long-time limit. The influence of the degree distribution
of the nodes is naturally taken into account. For simple network topologies we solve the model analytically; the
cases of random and small world are studied in detail. Applications for food-chain dynamics and viral mar-
keting are discussed.
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I. INTRODUCTION

In general, a discovery, invention, or the emergence of
something new depends on the combination of several pa-
rameters, all of them having to be simultaneously met. One
may think of economy, where the production of a good de-
pends on the production or existence of other goods, e.g., to
produce a car one needs the wheel, the motor, and some
fioritura. In return, this new discovery opens new possibili-
ties and needs that will lead to the production of yet new
goods, e.g., the simultaneous existence of the car and of al-
cohol directly leads to the invention of the air bag, etc. This
feedback is responsible for the potential explosion of the
number of items, such as observed, e.g., in the Cambrian
explosion, and may even lead to a pandemics where all pos-
sible items are produced �1�.

Such autocatalytic processes are very general �1–4� and
obviously apply to many situations not only related to inno-
vation, but also to evolution, opinion formation, food chains,
etc. Typical examples are the dynamics of scientific ideas,
music genres, or any other field where the emergence of a
new element possibly leads to new combinations and new
elements. In the case of social systems, where it is well
known that the activation of an agent may require simulta-
neous exposure to multiple active neighbors �5,6�, one may
think of the spreading of information or rumors between so-
cial agents who propagate information only after verifying
its validity among several sources, as well as other collective
phenomena such as riots, stock market herds, etc.

After mapping the above catalytic reactions onto a net-
work structure, where nodes represent items �agents� and di-
rected links show which items are necessary for the produc-
tion of others �which agents influence others�, it is tempting
to introduce a unanimity rule �UR�: a node on the network is
activated only if all the nodes arriving to it through a link are
activated. Surprisingly, the dynamics of such an unanimity
rule, that is a straightforward generalization of the majority
rule of opinion dynamics �7–11� and reminds on features of
the voter model �12–16�, the Axelrod model �17,18� as well

as of Boolean networks �3,19�, is poorly known �1�. Let us
emphasize that UR differs from these previous models by the
fact that it is irreversible, i.e., once a node has reached the
activated state, it remains in it. From a practical point of
view, the irreversible nature of UR makes it an excellent
candidate for modeling the adoption of a new technology,
e.g., multimedia messaging service �MMS� �20�, by interact-
ing customers. Indeed, technological standards are them-
selves irreversible once they are adopted by a population,
e.g., a mainstream revival of vinyl records instead of CD’s
and MP3’s is more than unlikely. Another specificity of UR
is the fact that it is purely deterministic, i.e., once the topol-
ogy is fixed and an initial number of nodes are activated, the
whole dynamics is determined by the interaction between
neighbors. In contrast, the Voter model, when it is applied to
a complex network, incorporates a random step when a node
chooses among its neighbors with whom it will interact.
Similarly, in the majority rule, a node choses randomly two
nodes among its neighbors in order to form a majority triplet.
We will show below that such random effects alter the
spreading on the network and may lead to qualitatively very
different features.

The unanimity rule may also be viewed as a limiting case
of a threshold model �TM� for decision making scenarios
�21–23�, except that TM is usually applied to an undirected
network while UR is defined on a directed network. In such
a model, a node changes its state if a fraction T, 0�T�1, of
its neighbors are in the other state. However, contrary to
previous studies, we are not interested in the probability that
a cascade is triggered by a single node �or small set of nodes�
nor in the expected size of the global cascade once it is
triggered, but in the evolution of the system when a finite
fraction of the nodes is initially activated. In the following,
we will therefore look at the relation between the initial
number of activated nodes and the final number of activated
nodes in the network, and at the condition for a pandemics,
i.e., a complete activation of the network, to take place.

The remainder of the paper is organized as follows. In
Sec. II, the unanimity rule is introduced. In Sec. III, we de-
rive equations for the time evolution of the proportion of
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activated nodes. These equations are shown to be nonlocal in
time, i.e., they depend explicitly on the initial conditions.
They depend on the network topology and exhibit a transi-
tion depending on the initial conditions, i.e., one needs to
activate initially a minimum number of nodes to ensure that
the whole system gets activated in the long-time limit. We
also focus on a simplified topology where each node has
exactly two incoming links and re-formalize our description
in order to highlight the role played by the local correlations.
To do so, we look at all the configurations of nodes and their
direct neighbors and show that the system asymptotically
reaches a frozen state. In Sec. IV, we successfully compare
our predictions with simulations of UR on various topolo-
gies. In Sec. V we conclude and make some remarks on
practical applications and generalizations of UR.

II. UNANIMITY RULE

Let us now introduce the model in detail. The network is
composed of N nodes related through directed links. Each
node exists in one of two states: activated or inactivated. The
number of nodes with indegree i �the indegree of a node is
defined to be the number of links pointing to it� is denoted by
Ni and depends on the underlying network structure. It is
therefore a fixed quantity that does not evolve with time.
Initially �at t=0� there are A�0� nodes which are activated,
among which Ai�0� have an indegree i. In general, the total
number of activated nodes at time t is denoted by A�t� and
the number of nodes of type i, activated at time t, is Ai�t�.
These quantities satisfy the relation

A�t� = �
i

Ai�t� . �1�

It is also useful to introduce the quantities ni=Ni /N and
ai�t�=Ai�t� /Ni which are the proportions of nodes with inde-

gree i in the network �indegree distribution� and the prob-
ability that such a node i is activated, respectively. Let us
also define

a�t� =
A�t�
N

= �
i

niai�t� �2�

that is the fraction of activated nodes in the whole network at
time t.

The unanimity rule is defined as follows �see Fig. 1�. At
each time step, each node is considered, i.e., the dynamics is
synchronous �24�. If all the links arriving to an inactivated
node i originate at nodes which are activated at t−1, i gets
activated at t. Otherwise, it remains inactivated. The process
is applied iteratively until the system reaches a stationary
frozen state, characterized by an asymptotic value aFIN
�a���. In the following, we are interested in the relation
between aFIN and aIN�a�0�, i.e., what is the final occupation
of the network as a function of its initial occupation on a
specific network. Let us mention that each node may be pro-
duced by only one combination of �potentially many, de-
pending on the indegree� nodes. This is a modification of the
model of Hanel et al. �1�, where more than one pairs of �two�
nodes could produce new elements and will lead to a differ-
ent equation for the activation evolution, as shown below.
The dynamics studied here implies that nodes with a higher
indegree will be activated with a probability smaller than
those with a smaller indegree—because the former have
more conditions to be fulfilled.

III. ANALYTICAL APPROACH

A. Equation of evolution

Let us now derive an equation of evolution for Ai�t� and
A�t�. To do so it is helpful to consider the first time step and
then to iterate. There are initially A�0� activated nodes,

t=0 t=1 t=2 time

FIG. 1. First two steps of UR starting from an initial network of seven nodes, two of them being activated. Initially there is only one node
among the nonactivated nodes that satisfies the unanimity rule. It gets therefore activated at the first time step. At that time, there is a new
node whose two incoming links come from activated nodes. It gets activated at the second time step. It is straightforward to show that this
system gets fully activated at the fourth time step.
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Ai�0�=A�0�Ni /N of them being of indegree i on average �the
activated nodes are randomly chosen in the beginning�. The
ensemble of Ai�0� nodes is called the initial set of indegree i.
By construction, the probability that i randomly chosen
nodes are initially activated, is ai�0� �i is an exponent�. The
average number of nodes with indegree i and which respect
the unanimity rule is therefore Nia

i�0�. Among these nodes,
Nia�0�ai�0� were already activated initially. This is due to the
fact that the total number of nodes with degree i that are
initially activated is Nia�0�. Consequently, the number of
nodes that gets activated at the first time step is

�i�0� = �Ni − Nia�0��ai�0� �3�

and, on average, the total number of occupied nodes with
indegree i evolves as

Ai�1� = Ai�0� + �i�0� . �4�

At the next time step, the average number of nodes with
indegree i, which respect the unanimity rule and which are
outside the initial set is �Ni−Nia�0��ai�1�. Among those
nodes, �i�0� have already been activated during the first time
step, so that the average number of nodes which get activated
at the second time step is

�i�1� = �Ni − Nia�0���ai�1� − ai�0�� . �5�

Note that Eq. �5� is valid because no node in �i�1� also
belongs to �i�0�. This is due to the fact that each node can
only be activated by one combination of i nodes in our
model, so that no redundancy is possible between �i�1� and
�i�0�. By proceeding similarly, it is straightforward to show
that the contributions �i�t� read

�i�t� = �Ni − Nia�0���ai�t� − ai�t − 1�� , �6�

with a�−1�=0, by convention. The number of activated
nodes evolve as

Ai�t + 1� = Ai�t� + �i�t� . �7�

By dividing Eq. �7� by Ni, one gets a set of equations for the
proportion of nodes ai� �0,1�:

ai�t + 1� = ai�t� + �1 − a�0���ai�t� − ai�t − 1�� , �8�

where the coupling between the different proportions ai�t�
occurs through the average value a�t�=�iniai�t�, as defined
above. Finally, by multiplying Eq. �8� by the indegree distri-
bution ni and summing over all values of i, one gets a closed
equation for the average proportion of activated nodes in the
network that reads

a�t + 1� = a�t� + �1 − a�0���
i

ni�ai�t� − ai�t − 1�� . �9�

Let us stress that Eq. �9� is nonlinear as soon as ni�0, i
�1. Moreover, it is characterized by the nontrivial presence
of the initial condition a�0� in the right-hand side nonlinear
term and is therefore nonlocal in time. One should stress that
this nonlocality is a feature of the effective mean field de-
scription and not of the UR itself, where, by construction, the
configuration of the system at time t+1 is fully determined

by its configuration at time t. The origin for this nonlocality
in the mean field description will be discussed further in Sec.
III C. Finally, let us also note that Eq. �9� explicitly shows
how the indegree distribution ni affects the propagation of
activated nodes in the system.

B. Some special cases

Let us now focus on simple choices of ni in order to
apprehend analytically the behavior of Eq. �9�. The simplest
case is ni=�i1 �each node has one incoming link� for which
Eq. �9� reads

a�t + 1� = a�t� + �1 − a�0���a�t� − a�t − 1�� . �10�

This equation is solved by recurrence:

a�1� = a�0� + �1 − a�0��a�0� ,

a�2� = a�0� + �1 − a�0��a�0�

+ �1 − a�0���a�0� + �1 − a�0��a�0� − a�0��

=a�0� + �1 − a�0��a�0� + �1 − a�0��2a�0� �11�

and, in general,

a�t� = �
u=0

t

�1 − a�0��ua�0� = 1 − �1 − a�0��t+1. �12�

This last expression is easily verified:

a�t + 1� = �
u=0

t

�1 − a�0��ua�0� + �1 − a�0��

�	�
u=0

t

�1 − a�0��ua�0� − �
u=0

t−1

�1 − a�0��ua�0�

= �

u=0

t+1

�1 − a�0��ua�0� . �13�

The above solution implies that any initial condition a�0�
�0 converges toward the asymptotic state aFIN=1, i.e.,
whatever the initial condition, the system is fully activated in
the long time limit. From Eq. �12�, one finds that the relax-
ation to aFIN=1 is exponentially fast, a�t��1−et ln�1−a�0��.

Let us now focus on the more challenging case ni=�i2
where all the nodes have an indegree of 2 by construction. In
that case, Eq. �9� reads

a�t + 1� = a�t� + �1 − a�0���a2�t� − a2�t − 1�� . �14�

The nonlinear term does not allow one to find a simple re-
currence expression as above. However, numerical integra-
tion of Eq. �14� shows that the leading terms in the Taylor
expansion of a�t� behave as

a�t� = �
i=1

t+1

ai�0� + O�t + 2� , �15�

thus suggesting that the asymptotic solution is
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a��� =
a�0�

1 − a�0�
. �16�

This solution should satisfy the normalization constraint
a����1, so that it can hold only for initial conditions a�0�
�1/2. This argument suggest that a transition takes place at
ac=1/2, such that only a fraction of the whole system gets
activated when a�0��ac while the whole system activates
above this value �see Fig. 2�. We verify the approximate
solution �16� by looking for a solution of the form

a�t� =
a�0�

1 − a�0�
�1 + ��t�� . �17�

By inserting this expression into Eq. �14�, one gets the recur-
rence relations

��t + 1� = ��t� + a�0��1 + ��t��2 − a�0��1 + ��t − 1��2,

��t + 1� = ��t� + 2a�0����t� − ��t − 1�� , �18�

where the second line is obtained by keeping only first order
corrections in �. In the continuous time limit, keeping terms
until the second time derivative, one obtains

�1 − 2a�0���t��t� + 1/2�1 + 2a�0���t
2��t� = 0, �19�

whose exponential solutions read ��t�=e−	t with

	 =
1

2

�1 − 2a�0��
�1 + 2a�0��

. �20�

This is a relaxation to the stationary state a���, only when
a�0��1/2, thereby confirming a qualitative change at ac

=1/2. Contrary to the case �i1, there is therefore a transition,
reminding the behavior observed in Refs. �1,22� and the ex-
istence of critical mass, i.e., a critical value ac=1/2 under
which only a fraction of the whole system is asymptotically
activated.

Before going further, it is interesting to focus on a variant
of UR in order to highlight the importance of its determinis-
tic nature. This variant is defined as follows. Let us consider
a directed network where nodes have on average a high in-
degree. For the sake of simplicity, we consider a fully con-
nected network, i.e., each node receives a link from all the
N−1 other nodes. At each time step, all the nodes randomly
select two of their neighbors, in a way that reminds on the
process of Eq. �14� and it gets activated only if both neigh-
bors were activated at the previous time step. It is straight-
forward to show that the equation of evolution for at is now

a�t + 1� = a�t� + �1 − a�t��a2�t� �21�

and that aFIN=1, i.e., all the nodes are asymptotically acti-
vated, whatever the initial condition aIN, except if aIN=0.
The difference from the relation Eq. �16� of UR is due to the
fact that the inclusion of random effects mixes the different
configurations of the system, i.e., in a mean field way, and
therefore multiplies the possibility for nodes to be activated.

C. Alternative description: The role of correlations

Let us now return to UR and emphasize some points that
deserve attention. First, one should note that the critical pa-
rameter of the above transition is not an external parameter,
but it is the initial condition aIN itself, i.e.,

aFIN�=1 if aIN � ac,

�1 otherwise.
�22�

Such a dependence on initial conditions has also been ob-
served in Axerod dynamics �25–27� or minority games �28�.
Equation �22� also implies that UR has a continuum of at-
tractors, i.e., the asymptotic state of the systems is not lim-
ited to a few fixed points, each of them surrounded by its
own basin of attraction, but the whole range of values a
� �0,1� may be a stationary solution depending on the initial
condition aIN �this can be seen from Fig. 2 as the curve
aFIN�aIN� goes continuously from 0 to 1�. Finally, one should
also stress that the nonlocality in time of the dynamical equa-
tions Eq. �9� implies that the same value a�t� will reach a
different stationary state aFIN depending on the time t at
which it is attained.

In order to understand the origin of these peculiar proper-
ties, it is useful to tackle the problem analytically from a
different point of view. To do so, let us focus on networks
where all the nodes have an indegree of 2, i.e., ni=�i2. The
state of a node may either be A for activated or I for inacti-
vated, but, in order to calculate its state at the next step, one
also needs to know the state of its two neighbors. Conse-
quently, we represent the state of a node by a triangle �see
Fig. 3� composed of this node and of its two incoming neigh-
bors. Let N
0;
1
2

be the number of such triangular configu-
rations where a node in state 
0 receives its first link from a
node in state 
1 and a second link from a node in state 
2. 
i
may be A �activated� or I �inactivated�.

The equations of evolution for N
0;
1
2
are easily found to

be �see Fig. 3�

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

a F
IN

aIN

Simulations

FIG. 2. Relation aFIN�aIN� obtained by integrating numerically
Eq. �14� �solid line� and by performing simulations of the model on
a network with ni=�i2. The system obviously shows a transition at
a�0�=1/2. Moreover, the prediction, Eq. �16� is in perfect agree-
ment �indistinguishable from the solid line� with the numerical in-
tegration of Eq. �14�. The simulations were performed with N
=10 000 nodes and the results are averaged over 100 realizations of
the process.
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NA;AA�t + 1� = NA;AA�t� + NI;AA�t� + �I→ANA;AI�t�

+ �I→A
2 NA;II�t� ,

NA;II�t + 1� = �I→I
2 NA;II�t� ,

NA;AI�t + 1� = �I→INA;AI�t� + 2�I→A�I→INA;II�t� ,

NI;II�t + 1� = �I→I
2 NI;II�t� ,

NI;AA�t + 1� = �I→A
2 NI;II�t� + �I→ANI;AI�t� ,

NI;AI�t + 1� = �I→INI;AI�t� + 2�I→A�I→INI;II�t� , �23�

where we have taken into account the fact that an inactivated
node whose two incoming neighbors are activated will be
activated at the next time step and that an activated node
remains activated forever. The quantities �I→A and �I→A are
the probabilities for an inactivated incoming neighbor to get
activated and to remain inactivated, respectively. These
quantities obviously respect

�I→I = 1 − �I→A. �24�

In order to close the system of equations �23�, we evaluate
the transition probability �I→A by the probability for a ran-
domly selected node I to have two activated incoming neigh-
bors

�I→A =
NI;AA

NI;AA + NI;AI + NI;II
. �25�

Let us also introduce the total number of activated nodes
NA=�
1,
2

NA;
1
2
�which is equal to A of Eq. �1�� and the

total number of inactivated nodes NI=�
1,
2
NI;
1
2

. By sum-
ming over the states of the incoming neighbors, one also
finds

NA�t + 1� = NA�t� + NI;AA�t� ,

NI�t + 1� = NI�t� − NI;AA�t� , �26�

which confirms that only the configurations NI;AA drive the
evolution of the system and that a stationary state is reached

when NI;AA=0. This also shows that the stationary state is
frozen, as no change is possible when NI;AA=0. In some
sense, the number of dynamic triangles NI;AA may therefore
be viewed as the potential of the network to change, and the
evolution stops, whatever its state, when all the dynamic
triangles have been transformed into other triangles.

Let us now focus on the initial conditions of the system of
equations �23�. In principle, many initial conditions may be
chosen, each of them leading to a different trajectory in the
six-dimensional dynamical space. However, initial condi-
tions are subject to several constraints. On the one hand, the
following equality has to hold:

�

0,
1,
2

N
0;
1
2
= N , �27�

which is just a normalization, but initial conditions must also
satisfy the conservation law

TA = 2NA,

TI = 2NI, �28�

where the quantities

TA = 2NA;AA + 2NI;AA + NA;AI + NA;AI,

TI = 2NA;II + 2NI;II + NA;AI + NA;AI �29�

are the total number of activated �inactivated� incoming
neighbors in triangles. Relation �28� therefore means that
each node that is an incoming neighbor in a triangle is also at
the summit of another triangle �as it also receives two incom-
ing links by construction�. It is important to stress that the
constraints �28� are preserved by the dynamics �23�. Indeed,
one verifies easily that

TA�t + 1� − 2NA�t + 1� = �I→I�TA�t� − 2NA�t�� ,

TI�t + 1� − 2NI�t + 1� = �I→I�TI�t� − 2NI�t�� �30�

so that Eq. �28� holds all times if it holds at t=0.
One should emphasize that there are many configurations

N
0;
1
2
of the six-dimensional space that satisfy the con-

straints �27� and �28� and that have the same average number
of activated nodes NA. However, the NA=Na0 nodes that are
initially activated are randomly chosen. Consequently, there
are no correlations between the states of neighboring nodes
and, among all the possible configurations for which NA
=Na0, the initial condition is actually

NA;AA�0� = Na3�0� ,

NA;II�0� = Na�0��1 − a�0��2,

NA;AI�0� = 2Na2�0��1 − a�0�� ,

NI;II�0� = N�1 − a�0��3,

NI;AA�0� = N�1 − a�0��a2�0� ,

FIG. 3. Transition probabilities between the six possible trian-
gular configurations. The dynamics is obviously irreversible, with a
preferred direction toward the activated �black� state.
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NI;AI�0� = 2N�1 − a�0��2a�0� . �31�

One verifies easily that Eq. �31� respects the constraints �27�
and �28�.

A recursive integration of the system of Eqs. �23� starting
from the initial conditions �31� has been performed by using
MATHEMATICA. It is found that the resulting a�t� is identical
to that obtained by integrating Eq. �14� starting from the
same initial condition a�0�, so that the relation aFIN�aIN� is
also identical. However, an analytical demonstration of the
equivalence of Eqs. �23� and �14� is still lacking—we are
open to suggestions.

Looking at Eqs. �23� and �14� as two sides of the same
process, one may now understand why the same value of a�t�
may lead to different stationary solutions aFIN. Indeed, it is
easy to show that the system of Eqs. �23� develops correla-
tions in the course of time, i.e., in general, the configurations
N
0;
1
2

�t� cease to fulfill the following relations when t�0:

NA;AA�t� = Na3�t� ,

NA;II�t� = Na�t��1 − a�t��2,

NA;AI�t� = 2Na2�t��1 − a�t�� ,

NI;II�t� = N�1 − a�t��3,

NI;AA�t� = N�1 − a�t��a2�t� ,

NI;AI�t� = 2N�1 − a�t��2a�t� , �32�

where a�t�=NA /N. This result is obvious for t→� and 0
�aIN�ac, as we have shown that 0�a����1, while NI,AA

=0 in that case. The emergence of such correlations implies
that the same value of a�t�, for different values of t, may
correspond to different configurations N
0;
1
2

and may
therefore lead to a different trajectory in the six-dimensional
space. Consequently, a different asymptotic state aFIN may be
reached in principle.

Before going further, one should note that a generalization
of Eqs. �23� for more general degree distributions ni is not an
easy task, as it implies a multiplication of the number of
variables to take into account. The formalism �9� is to be
preferred in that case.

IV. SIMULATIONS

Let us now verify the above predictions by performing
numerical simulations of the model. To do so, one has first to
build networks whose indegrees are �iK, i.e., the indegree of
each node is exactly K, where K=1 for Eq. �12� and K=2 for
Eq. �16�. Such networks are easily implemented by picking
randomly K nodes l1 , l2 , . . . , lK for each node i� �1,N� and
adding links going from l1 , l2 , . . . , lK to i. Once the underly-
ing network is built, we randomly assign a�0�N activated
nodes to the network and apply the unanimity rule until a
stationary state is reached. The asymptotic value aFIN
�a��� is averaged over several realizations of the process
�on several realizations of the underlying network� and is

shown to be in excellent agreement with the theoretical pre-
dictions. The case K=2 is plotted in Fig. 2, but other values
of K have also been studied and suggest that ac�K�=1
−1/K. This behavior is expected as nodes with a higher de-
gree require more conditions for an activation, so that the
asymptotic number of activated nodes is reduced.

We have also focused on more realistic topologies and
compared the results obtained from Eq. �9� with numerical
simulations of the UR. Two types of networks are discussed
in the following, purely random networks �29� and small-
world-like networks �30�, but other types have also been
considered and lead to the same conclusions. The random
network was obtained by randomly assigning L directed
links over N nodes, so that its degree distribution is

nk = e−		k

k!
, �33�

where 	=L /N. The small-world network was obtained by
starting from a directed ring configuration and then randomly
assigning L directed links �shortcuts� over the nodes, i.e., the
total number of links in that case is L+N �The network
drawn in Fig. 1 is such network with N=7 nodes and L=3
short cuts�. In that case, the degree distribution is easily
found to be

nk = 
0 if k = 0,

e−	 	k−1

�k − 1�!
otherwise.

�34�

Let us note that the directed small-world network can be
viewed as a food chain with a well-defined hierarchy be-
tween species together with some random short cuts. In that
case, UR can be interpreted as an extinction model: if all the
species that one particular species can eat, go extinct, this
species will also die out.

To compare the simulation results with the theoretical pre-
dictions, we integrate Eq. �9� with the corresponding degree
distributions of Eqs. �33� and �34�. The agreement is excel-
lent, except close to the transition points where finite size
effects are expected. One observes �Fig. 4�b�� by increasing
the average degree that the location of the transition ac is
closer and closer to 1, for the same reason such a shift took
place in the case of �iK networks.

One should also stress that each node receives at least one
incoming link by construction �n0=0� in �iK networks and in
small-world network. This is not the case for random net-
works �see Eq. �33��, for which one has to discuss the am-
biguous dynamics of nodes with zero incoming links. Two
choices are possible. Either these nodes cannot be activated
in the course of time, because they are not reached by any
other node �no-zero version�, or all of them get activated at
the first time step, thereby assuming that their activation does
not require any first knowledge �Zero version�. The choice is
a question of interpretation. The two versions are associated
to different evolution equations, namely,
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a�t + 1� = a�t� + �1 − a�0���
i=1

�

ni�ai�t� − ai�t − 1�� �35�

for the no-zero version, and

a�t + 1� = a�t� + �1 − a�0���
i=0

�

ni�ai�t� − ai�t − 1�� �36�

for the zero version. When n0=0, the above equations are
obviously equivalent. The two interpretations lead to quite
different behaviors �Fig. 4�a��. As expected, there are always
more activated nodes in the zero version than in the no-zero
version. This effect even provokes qualitative differences be-
tween the versions, i.e., as shown in Fig. 4�a�, there is no
critical value ac for the no-zero version while ac�0.48 for
the zero version.

Before concluding, let us stress that the difference be-
tween the two interpretations is more pronounced when the
number of nodes with zero incoming links becomes higher.
This is the case for growing networks, e.g., the Barabási-
Albert network �31�, that are well-known models for scale-
free networks. We have verified this effect by studying nu-
merically UR on a network that was built starting from one

seed node and adding nodes one at a time until the system is
composed of N nodes �32�. At each step, the node first con-
nects to a randomly chosen node and, with probability r, it
redirects its link to the father of the selected node. This
method is well known to be equivalent to preferential attach-
ment and to lead to the formation of fat-tail degree distribu-
tions k−�, with �=1+1/r �32,33�, while the number of nodes
with zero incoming links is very large. We have studied sev-
eral values of � close to �=3 and it is shown �see Fig. 5� that
all the nodes are finally activated whatever the initial condi-
tion in the zero version �ac=0�, while there is no transition in
the no zero version �ac=1�. It is also interesting to point that
an integration of the Eqs. �35� and �36� reproduce the same
extreme behavior.

V. CONCLUSION

To summarize, we have introduced a simple model for
innovation whose dynamics is based on the unanimity rule. It
is shown that the discovery of new items on the underlying
network opens perspectives for the discovery of yet new
items. This feedback effect may lead to complex spreading
properties, embodied by the existence of a critical size for
the initial activation, that is necessary for the complete acti-
vation of the network in the long-time limit. The problem has
been analyzed numerically on a large variety of network
structures and has been successfully described by recurrence
relations for the average activation. Let us stress that these
recurrence relations have a quite atypical form due to their
explicit dependence on initial conditions. Moreover, their
nonlinearity makes them a hard problem to solve in general.
We have also shown that the system might be studied alter-
natively by focusing on the configurations of nodes and their
direct neighbors, thereby highlighting the role of internal
correlations and clarifying the origin of the nonlocality in
time of the recurrence relations.
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FIG. 4. �a� Relation aFIN�aIN� obtained for random networks
with L=2N. The no zero and zero versions �see text� are shown. �b�
aFIN�aIN� for small-world networks with L=	N short-cuts. The
simulations were performed with N=10 000 nodes and the results
are averaged over 100 realizations of the process. The solid lines
are the numerical solutions of Eqs. �35� and �36� and Eq. �9�, re-
spectively, evaluated with the corresponding degree distributions,
given in Eqs. �33� and �34�.
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FIG. 5. aFIN�aIN� for a network with redirection. The total num-
ber of nodes is N=10 000, r=1/2 and the results are averaged over
100 realizations. In the zero version, one observes that all the nodes
are finally activated whatever the initial condition. In the no zero
version, in contrast, the full activation of the network is attained
only when aIN=1. The solid lines correspond to numerical integra-
tions of Eqs. �35� and �36� with the corresponding degree
distribution.
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Finally, let us emphasize that unanimity rule is a general
mechanism that should apply to numerous situations related
to innovation, opinion dynamics, or even species and popu-
lation dynamics. Practically, one may think of the adoption
of a new technological standard in a population of interacting
customers or the propagation of rumors between social
agents, the key ingredient of UR being that many conditions
have to be simultaneously met in order to drive the activation
of a node. We have shown that UR naturally leads to the
notion of critical mass, which might have important conse-
quences, in marketing, for instance, as it suggests that an
efficient viral marketing campaign �34� should reach a mini-
mum number of customers in order to ensure the propagation
of the message through the whole network. Moreover, the
results of Sec. IV also suggest that a targeted attack �35,36�,
i.e., a strategic choice of initially activated nodes instead of a
random choice, might alter, and possibly accelerate, the
spreading of the process. This is due to the fact that many
triangle configurations N
0,
1,
2

correspond to the same value
of a�0�, each of them corresponding to a different time evo-
lution of a�t�.

Finally, one should also stress that UR is a very extreme
dynamics that may lead to counterintuitive features, i.e., the
propagation becomes slower as the network gets more con-
nected. This effect can be circumvented by softening the
unanimity rule, for instance, by requiring that only a finite
number of neighbors has to be activated for an activation. We
will show elsewhere that this variation—unfortunately more
complicated—leads to qualitatively similar results �existence
of ac� without such unrealistic features.

To conclude, we hope that in the above sense this paper
will form part of a set of works �activated nodes� which
allow for the activation of novel �yet inactive� perspectives
and research directions.
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